Computers and Electronics in Agriculture 176 (2020) 105618

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Accessing the temporal and spectral features in crop type mapping using
multi-temporal Sentinel-2 imagery: A case study of Yi’an County,
Heilongjiang province, China

Check for
updates

Hongyan Zhang®*, Jinzhong Kang®, Xiong Xu"*, Liangpei Zhang®

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei 430079, China
® College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

ARTICLE INFO ABSTRACT

Crop type mapping visualizes the spatial distribution patterns and proportions of the cultivated areas with
different crop types, and is the basis for subsequent agricultural applications. Understanding the effectiveness of
different temporal and spectral features in detailed crop classification can help users optimize temporal window
selection and spectral feature space construction in crop type mapping applications. Therefore, in this study, we
used time-series Sentinel-2 image data from Yi’an County, Heilongjiang province, China, to analyze the effec-
tiveness of the temporal and spectral features used in three common machine learning classification methods:
classification and regression tree (CART) decision tree, Support Vector Machine (SVM), and random forest (RF).
For CART and SVM classifiers, the relative importance of the features was reflected by the order and frequency of
attributes selected as the node and the square of the model weight. In RF, the change in prediction error as
calculated by out of bag data is taken as the measure of feature importance. The standard deviation of the
average value of all labeled pixels was used to evaluate the correctness of the unanimous conclusions drawn by
these three methodologies. The quantitative evaluation results given by the confusion matrix show that random
forest achieved the best overall accuracy, while support vector machine ranked second, and the decision tree
algorithm yielded the least accurate classification results. From the perspective of feature importance, making
full use of the discriminative information between different crops, and constructing a rational feature space, can
help to improve classification accuracy significantly. In detail, the discriminative information between the
different crop types is as follows: 1) images at the peak of the crop growth period are crucial in the classification
of different crops; 2) the short-wave infrared bands are particularly suitable for fine crop classification; and 3)
the red edge bands can effectively assist classification. Finally, our study achieved crop type mapping in the
study area with an overall accuracy of 97.85% and a Kappa coefficient of 0.95.
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1. Introduction subjectivity, time-consuming, labor-intensive, delayed updating, and

the lack of spatial distribution information (Zhong et al., 2016; Zhang

Agriculture is the foundation for social and economic development
(Awokuse, 2009), food security (Lu et al., 2016; Gilbertson et al., 2017)
and land resource management (Huang et al., 2016; Lebourgeois et al.,
2017). Crop type mapping can help us to obtain the spatial distribution
patterns and proportions of the cultivated areas of different crop types,
and is the basis for yield estimation (Bolton and Friedl, 2013; Song
et al., 2017; van der Velde et al., 2019), water resources management
(Vogels et al., 2019), and disaster assessment (Zhang, 2004). However,
the traditional methods of obtaining and updating the crop type and
planting area information are mainly based on sampling surveys and
statistical reports (Hu et al., 2017), which have problems such as strong
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et al., 2020). In contrast, remote sensing technology has delivers wide
coverage, timely data acquisition, fast and dynamic updating, and thus
has become an increasingly powerful tool for crop type mapping (Wei
et al., 2018; Zhai et al., 2019a).

However, crop type mapping using remote sensing data is challen-
ging for several reasons. One reason is the mutual constraint between
remote sensing imaging technology and the data cost (Pefia-Barragan
et al., 2011; Zhang et al., 2019). An appropriate combination of spatial,
spectral, and temporal resolutions is required (Pefia-Barragan et al.,
2011), then low-cost but of good quality data is always preferred. For
example, Moderate-Resolution Imaging Spectroradiometer (MODIS)
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images have been extensively used for these reasons over the last
decade (Gallego et al., 2014; Hu et al., 2017; King et al., 2017; Massey
et al., 2017; Song et al., 2017). The corresponding products are also
appropriate for studying land-use changes caused by rapid agricultural
development (Teluguntla et al., 2018). However, the spatial resolution
of these products is too coarse to characterize individual farmland plots.
Such products are only appropriate for parcels larger than 32 ha
(Wardlow and Egbert, 2008), which limits their usefulness in assessing
small cultivated plots. Although the Landsat satellite has alleviated this
problem, the spatial resolution of its scale still cannot capture the actual
spatial distribution patterns of fragmented farmland (with field sizes
less than 0.5 ha), particularly in China, where the average field size is
less than 1 ha (Samberg et al., 2016). In addition, the 16-day revisit
cycle of Landsat is insufficient to capture the different phenological
information of crops. High and very high resolution (less than 1 m)
images contain rich crop texture and structure information, and thus
have the ability to be used for crop type mapping under complex terrain
and planting conditions, but their high cost, large data storage and
computational requirements limit their application (Wang et al., 2019).
Fortunately, with the operation of the Sentinel-2 series of satellites, the
spatial resolution of medium-resolution images can reach 10 m, which
can more accurately represent the spatial distribution patterns of dif-
ferent crop types. Meanwhile, the revisit cycle of Sentinel-2 is only five
days, which is helpful for capturing the phenological information of
crops during the growing season. This type of bi-directionally enhanced
data provides us with a new opportunity for precise crop type mapping
(Kang et al., 2018, Lupia and Antoniou, 2018).

Another reason that crop type mapping using remote sensing data is
a challenging task can be attributed to agronomic factors. Different crop
types may have similar phenological calendars and spectral responses
(interclass similarity). At the same time, crop sowing times and growth
states can be varied for the same crop type (intraclass variability) on
account of the complex environmental and climatic conditions. Both
these issues make it even more challenging to identify specific crop
types, compared with land cover mapping.

The spectral feature is the most basic information of remote sensing
data and needs to be considered thoroughly in such complex circum-
stances (Zhong et al., 2014; Zhai et al., 2019b). The spectral reflectance
of crops is influenced by the vegetation status, pigmentation, leaf water
content, residue cover, etc. (Bolton and Friedl, 2013). Different crop
types therefore have different responses in different spectral regions.
Thus, spectral indices were designed to amplify these differences. The
normalized difference vegetation index (NDVI) utilizes the different
increase rate of reflectivity between the red and near-infrared bands to
characterize the vegetation status and canopy structure, and has been
demonstrated to be a very effective way to distinguish different crops
(Wardlow and Egbert, 2008). Despite this, some crops exhibit unique
phenological stages that are distinct from those of other crops, which
means that the extensively used NDVI may not be the optimal spectral
feature for identifying these crops (Hu et al., 2017). For instance, for
rice, irrigation information is a more effective discriminative attribute
than canopy structure when differentiating rice from other crop types
(Wang et al., 2015; Dong et al., 2016). Therefore, an index that is
sensitive to soil moisture and leaf water content, such as the land sur-
face water index (LSWI), may be more effective in extracting rice in
periods of transplanting and flooding. Furthermore, a single spectral
index such as NDVI or LSWI may be unable to capture some of the vital
phenological stages when multiple crop types are mapped simulta-
neously, and they cannot characterize complex crop development and
environmental conditions. Hence, it is essential to understand the re-
lative effectiveness of the different spectral features for crop type
mapping, and to evaluate whether the red edge bands in Sentinel-2 are
important for accurate crop classification.

Temporal attributes are another primary factor relevant to crop type
mapping (Foerster et al., 2012), and can help distinguish expansive
landforms, vegetation types, soil associations, and other natural
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resources. Some crop types such as corn and soybean however, may
have similar phenological stages (e.g. sowing, emergence, three leaves,
and senescence) in some periods, but they also have their own unique
phenological properties (Low et al., 2013). Phenological differences
thus can be effectively exploited to distinguish one crop type from
natural vegetation and other crops. A widely used approach in crop
classification relies on a single-date image that corresponds to the time
most suited for identification based on specific phenological events. For
example, a SPOT 5 image from May 2006 was used by Yang et al.
(2011) to identify different crop types in South Texas, United States,
since most of the fields had reached or were approaching their peak
canopy growth period. The “single-date image” method is both time-
efficient and user-friendly (Hu et al., 2017). However, it is impossible to
guarantee that an image at the appropriate identification time is
available due to cloud cover, which can often prevent or delay the
image acquisition (Carrao et al., 2008; Zhai et al., 2019). Moreover, a
single image may fail when identifying several crop types with similar
spectral responses at that date, thus leading to an inaccurate classifi-
cation result (Hu et al., 2017). To overcome this problem, multi-tem-
poral information has been extensively used to identify different crop
types in agricultural applications (Wardlow and Egbert, 2008). Time-
series images are able to cover the different phenological stages of crops
and can describe the spectral distribution and variance of a pixel over a
year or season. Although many studies have illustrated the high per-
formance of using time-series images for crop type mapping (Pefa-
Barragén et al., 2011; Tatsumi et al., 2015; Hu et al., 2017), some
limitations still exist. For example, not every temporal image provides
useful information, and the utilization of all the time-series images does
not necessarily lead to the highest accuracy (Low et al., 2013). Other
studies have indicated that the discriminative information between
different land covers lies in a low-dimensional feature space, and that
additional images generally add little information, but increase the
complexity of the computation (Hu et al., 2017). In addition, the clas-
sification accuracy may even drop when the number of images used
increases, which is known as the “Hughes effect” (Low et al., 2013). The
distinct disadvantages of crop type mapping based on single-date
images and time-series data bring the need for better utilization of the
temporal information to the fore. Therefore, a comprehensive under-
standing of the optimal temporal window for crop type mapping is also
urgently needed.

In this paper, within this context, we analyze the relative usefulness
of the temporal and spectral features employed in three common
methods of machine learning classification. Yi’an County in
Heilongjiang province, China, was taken as a case study, and time-series
Sentinel-2 data from 2018 were used. The primary goal of our study
was to provide further insights into the feature space construction of
crop type mapping from multi-temporal Sentinel-2 data using the
classical classifiers of support vector machine (SVM), random forest,
and decision tree. In detail, the following research questions are spe-
cifically addressed in this paper:

e Which temporal window can capture the crucial phenological stages
most effectively?

e What spectral feature is most discriminative?

o Whether the red edge bands of Sentinel-2 are important for accurate
crop identification?

The rest of this paper is structured as follows. Section 2 provides
detailed descriptions of the study area, the multi-temporal Sentinel-2
images, the preprocessing methods, the reference ground-truth data,
and the experimental setup. Section 3 presents the experimental results,
including a qualitative presentation and a quantitative evaluation. In
Section 4, we answer our research questions based on the analysis of the
relative usefulness of the temporal and spectral features for each of the
three classification methods, and we verify these conclusions based on a
statistical analysis. Section 5 summarizes and concludes the work.
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Fig. 1. Location of Yi’an County, Heilongjiang Province, China and the sample data. The study area is represented in gray and the sample data was manually labeled
by visually interpreting three towns (Yi’an, Hongxing and Xintun) around the 115 field sampling points, which were selected in the field from July 16th to 20th,

2018. In total, 2,766,108 pixels were labeled as eight categories.

2. Materials and methodology

2.1. Study area

The study area of Yi’an County is a county-level administrative re-
gion in Heilongjiang province, China. It is located between
124°50-125°42’E and 47°16’-48°02'N, with 70 km in length and 55 km
in width, covering an area of 3,685 km?, as shown in Fig. 1.

The area shown in Fig, 1 is the transition zone between the Kebai
Plain and the Songnen Plain. The terrain gradually slopes from north-
east to southwest, with an average elevation of 220 m. The area is thus
suitable for the mechanized cultivation of crops. The climate is a tem-
perate continental monsoon climate, which is windy in spring, warm
and rainy in summer, cool in autumn, and cold in winter. As a result,
the crops in this region are mainly cultivated in spring and harvested in
autumn, due to the cold winter. The average temperature during April
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Fig. 2. Phenological calendars for the main crop types, and the dates of the selected images.

to October is 15.4 °C and the average precipitation is 402.9 mm, while
the annual “effective accumulated temperature” is 2513.3 °C. Most of
the precipitation is concentrated in summer, accounting for 69.4% of
the annual precipitation. July has the most precipitation, with an
average of 130 mm, accounting for 29.2% of the annual precipitation.

Heilongjiang province is known for its rich land and the high levels
of organic matter in the soil, which is very suitable for the growth of
crops. Thus, Yi’an is one of the major commodity grain counties of
China. The main crop types in this region are rice, corn, soybeans,
potatoes, and beets. Their specific phenological calendars are shown in
Fig. 2.

The red vertical lines in Fig. 2 represent the dates of the image used
in our study. The growth periods of these crops are all from April to
October, growing the fastest during the end of July to the beginning of
September (Hu et al., 2017). It can be observed that the phenological
calendars of corn, soybeans and potatoes are very similar. They have
many phenological stages during the same period, however, their
phenological differences are concentrated from the end of June to the
beginning of September. Beets have the longest growth cycle with un-
ique phenological planting and flowering attributes. The flowering
periods of soybeans, beets and potatoes are different, so we can use
their phenological differences for classification.

2.2. Sentinel-2 data and preprocessing

The bi-directionally enhanced Sentinel-2 image data was used in
this study. The Copernicus Sentinel-2 mission comprises a constellation
of two polar-orbiting satellites placed in the same sun-synchronous
orbit, phased at 180° to each other. The Sentinel-2 mission is aimed at
monitoring the variability in land surface conditions. Its wide swath
width (290 km) and short revisit time (10 days at the equator with one
satellite, and five days with two satellites under cloud-free conditions,
which results in revisit cycle 2-3 days at the mid-latitudes thus sup-
porting the monitoring of Earth surface changes. The details of all the
bands of the Sentinel-2 satellites are provided in Table 1.

We can see in Table 1 the spatial resolution of the red, green and

Table 1
Spectral bands of the Sentinel-2 sensors.

Band name Central wavelength (um) Resolution (m)
Band 1 - Coastal aerosol 0.443 60
Band 2 - Blue 0.490 10
Band 3 - Green 0.560 10
Band 4 - Red 0.665 10
Band 5 - Vegetation red edge 0.705 20
Band 6 — Vegetation red edge 0.740 20
Band 7 - Vegetation red edge 0.783 20
Band 8 - NIR 0.842 10
Band 8A - Narrow NIR 0.865 20
Band 9 - Water vapor 0.945 60
Band 10 - SWIR - Cirrus 1.375 60
Band 11 - SWIR 1.610 20
Band 12 - SWIR 2.190 20

blue bands reaches a scale of 10 m, more accurately representing the
spatial distribution patterns of different crop types. Meanwhile, there
are three addition vegetation red edge bands, which is far different from
Landsat and MODIS. One of our research questions was to evaluate
whether the red edge bands of Sentinel-2 are appropriate accurate crop
identification.

The available images for the study area in 2018 were downloaded
from the USGS Earth Explorer data portal (https://earthexplorer.usgs.
gov/). To reduce the impact of summer rainfall on the data, all the
available data was filtered with cloud content of no more than 20%,
and eight temporal phases in the growing season were finally obtained.
The corresponding dates are May 9th, May 19th, June 23rd, July 13th,
July 23rd, September 1st, September 11th, and September 26th. The
L1C-level atmospheric apparent reflectance data was converted to L2A-
level surface reflectance data using the Sen2Cor-2.5.0 plug-in. Since the
research area covers two tiles, each phase was obtained by cutting and
seamlessly mosaicking the two tiles with an administrative vector. The
images for each phase were resampled to a 10-m spatial resolution in
the Sentinel Application Platform (SNAP) 6.0. All the images were
unified into the WGS 1984 coordinate system with UTM 51 N projec-
tion. At this point, each time phase was made up of 12 bands, with the
exception of the 10th band (cirrus band), which formed part of the
input to the classifier as the spectral features.

2.3. Sample data

The sample data used in this study was manually labeled by visually
interpreting the local area around the field sampling points in the study
area. These 115 field sample points were selected in the field from July
16th to 20th, 2018. These data points were geo-referenced to remote
sensing images by latitude and longitude coordinates. In total,
2,766,108 pixels in three towns, including Yi’an, Hongxing, and Xintun
were labeled into eight categories, i.e. rice, corn, soybean, potato, beet,
water, forest, and building, as shown in Fig. 1. The specific sample
proportions are shown in Fig. 3.

As shown, corn, rice, soybean, potato and beet samples account for
54.22%, 21.72%, 13.13%, 1.91% and 3.88% of the total. Buildings,
water and forest samples accounted for 5.13% of the labeled samples in

363301,
13.13%

52954,
1.91%

107229,
5.88% 117662,
1499831, 4.25%
54.22%
600790,
21.72% 12723, 0.46%

11618, 0.42%
142003, 5.13%

Rice * Corn ® Soybean “ Potato ~ Beet ® Building ® Water ® Forest

Fig. 3. Sample data category settings and proportions.
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Table 2
Distribution of the training and test data (Unit: pixel).
Category Rice Corn Soybean Water Potato Building Beet Forest
Training 578 1533 359 12 63 106 103 12
Test 600,212 1,498,298 362,942 12,711 52,891 117,556 107,126 11,606
I];lt;p:ep;r;io_n _______________ _i The NDVI was selected first as it has been widely used in classifi-
| Tmage Acquisition cation applications, and an effective discriminator for distinguishing
| ) l between crops (Wardlow and Egbert, 2008). Other indices have also
| | been used in agricultural studies, and have shown the potential to de-
| Pre-processing | tect certain field crop properties that indicate crop differentiation
- - | (Pefia-Barragan et al., 2011; Hu et al., 2017). For example, Kang et al.
(2018) indicated that the normalized difference residue index (NDRI),
———————————————————— B the normalized differential senescent vegetation index (NDSVI), and the
I i ot g
Classification Feature shace consiruction | normalized differential tillage index (NDTI) make full use of the short-
| i : | wave infrared bands to characterize the water content and vegetation
| v v v | residue coverage, so they play a key role in discrimination between
| Decision Tree SYM Random forest | corn and soybeans. In the meantime, the perpendicular moisture index
L | (PMI), newly proposed by Zhang et al. (2018), has exhibited a good

| Accuracy assessment :

I

| |
I

Fig. 4. The whole flow chart of our research.

total, and were 4.25%, 0.46% and 0.42%, respectively. The unbalanced
distribution of the samples is caused by the uneven distribution of land
cover and with the operation of labeling samples by administrative
areas, one-thousandth of the pixels were randomly selected for classifier
model training. The others were used to verify the classification accu-
racy. Their specific distribution is shown in Table 2.

2.4. Methodology

Our research consisted of four parts: data preparation, classification,
feature importance analysis and accuracy assessment, illustrated by the
whole flow chart in Fig. 4.

Firstly, remote sensing image preprocessing was implemented on
the time series Sentinel-2 data that we downloaded. A feature space of
five spectral indexes and 12 spectral bands for each temporal phase
were constructed, and superimposed in chronological order. These
features were fed into three common machine learning classifiers, i.e.
decision tree, SVM and random forest. Three methodologies were used
to calculate feature importance for these three classification algorithms.
A confusion matrix of the classification results were used to evaluate
the classification precision. Details of some parts will be given point by
point in the following sections.

2.4.1. Feature space construction

In addition to the 12 original bands, five spectral indices were also
calculated for each phase. We divided these spectral indices into three
sets, according to the spectral bands they use, i.e., 1) visible-NIR region
indices; 2) visible-SWIR region indices; and 3) SWIR-SWIR region in-
dices. The formula for each index derived from Sentinel-2 wavebands
are listed in Table 3.

performance in rice extraction when combined with NDVI. Therefore,
these five indices were selected, considering the crop structure in the
study area. The two parameters in the formula of PMI were the same as
the original paper, i.e. G = 0.5 and M = 1.13. Together with the 12
spectral bands for each phase that are mentioned before, there were 96
spectral bands and 40 index images for eight temporal phases. All 136
features were superimposed in chronological order and were used as
the input feature spaces for the machine learning classification
methods.

2.4.2. Crop type mapping classifier selection

Three classical machine learning classification methods were se-
lected in this study: decision tree, SVM, and random forest. The decision
tree algorithm is an algorithm based on tree structure, which is used to
make a decision and obtain the final decision result (Gallego et al.,
2014). A recursive generation process of decision tree can be divided
into ID3, C4.5, and classification and regression tree (CART) decision
trees, according to the different methods of selecting the optimal par-
titioning attributes. Since the first two tested methods require different
numbers of attribute values (Quinlan, 1993), the CART decision tree
was used for the classification in this study. In addition, a post-pruning
process was carried out on the generated decision tree. The decision
tree algorithm is simpler to construct than the other machine learning
methods. More significantly, a decision tree algorithm can reflect the
importance of the feature variables by calculating the optimal partition
attribute index, which is conducive to the analysis of the classification
process (Gallego et al., 2014).

SVM is a supervised learning method based on statistical learning
theory and structural risk minimization principle (Piiroinen et al.,
2015). It has advantages when solving nonlinear problems, handling
small sample sets, and processing high-dimensional data (Asgarian
et al., 2016). SVM usually uses kernel functions to map the samples in
the original feature space to a high-dimensional one, then seeks the
partition hyperplane with the “maximum interval” (Zheng et al., 2015).
The widely used kernels are linear, Gaussian (also known as the radial
basis), polynomial, Sigmoid, and Laplace kernels. However, the classi-
fication result is influenced by the selection of the kernel function to
some extent, when we do not know the form of the feature mapping. In
this study, a Gaussian kernel was used, and its parameter y determines
how the data distribute in a new feature space. Furthermore, a penalty
factor C is introduced to punish the samples, which are misclassified, in
order to prevent overfitting, so that the optimization is more likely to
achieve the desired goal. A larger value of C always achieves a better
classification result on the training set, but the generated model has the
risk of overfitting, which leads to a decline in the generalization
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Table 3
The spectral indices used in this study.

Computers and Electronics in Agriculture 176 (2020) 105618

Spectral index

Formula adapted to Sentinel-2

Related vegetation biochemical and structural References

properties

Visible-NIR

Normalized difference vegetation index (NDVI) (B8 - B4)/(B8 + B4)

Perpendicular moisture index (PMI) G- LZ(BS + M % B4)

VM

Visible-SWIR

Normalized differential senescent vegetation index (B11 - B4)/(B11 + B4)
(NDSVI)

Normalized difference residue index (NDRI) (B4 - B12)/(B4 + B12)

SWIR-SWIR

Normalized differential tillage index (NDTI) (B11 - B12)/(B11 + B12)

Rouse et al. (1974)
Zhang et al. (2018)

Vegetation status, canopy structure
Vegetation status, water content

Vegetation status, water content, residue cover Qi et al. (2002)

Vegetation status, water content, residue cover Gelder et al. (2009)

Non-photosynthetic components, residue cover Van Deventer et al. (1997)

performance. Hence, the appropriate selection of C and y is vital to
achieve a good classification performance. The grid search method to-
gether with 10-fold cross-validation are widely used to determine the
optimal combination values of C and y. In this study, the obtained
optimal values of C and y were 64 and 0.5, used to train the model.

Random forest is a combinatorial classification algorithm of en-
semble learning, which has the advantages of high accuracy, good ro-
bustness, and ease of use (Breiman, 2001). The core idea of random
forest is to combine a set of base classifiers to obtain a classifier with a
significantly superior classification performance. Each of the base
classifiers can be an independent decision tree. The randomness of
random forest is reflected in two key steps (Breiman, 2001). One is the
random selection of samples, where an independent sampling method is
adopted to carry out the random sampling with replacement. The other
is the random selection of features. Some features are randomly se-
lected from all the features as alternative features at each classification
node, and then the optimal partitioning attribute is selected to construct
each decision tree. The introduction of these two random processes
ensures that the random forest avoids overfitting and has strong anti-
noise capabilities (Breiman, 2001). Therefore, two parameters need to
be set when using random forest. One is the number of base classifiers
(trees), and the other is the number of features that need to be ran-
domly selected at each node. It has been shown that the classification
error converges with the increase of the trees, and 100 trees can usually
obtain an accurate result (Tatsumi et al., 2015). Therefore, in this study,
the number of trees was set to 100, and the number of random features
was set as the square root of the number of total features.

2.4.3. Feature importance calculation

Three different methodologies were used to calculate the feature
importance for these three classification algorithms. For the CART de-
cision tree, the Gini index (Breiman et al., 1984) was adopted as the
measurement for the selection of the optimal classification features in
the decision tree. Specifically, the Gini value, which represents the
purity of data set D, is calculated as follows:

Iyl lyl

Gini(D) = Z Z Db =1-— ZPkZ
k=1

k=1 k'#k

(€Y

In this formula, p, represents the probability of an arbitrarily se-
lected sample belonging to the kth class. Gini(D) expresses the prob-
ability of label inconsistency when we randomly select two samples
from data set D. Therefore, the smaller the value of Gini(D), the higher
the purity of data set D. Furthermore, if we consider that the number of
samples at different branch nodes is different, we multiply the Gini
value with a weight of ID"I/IDI. The Gini index of attribute a can then be
obtained:

& IDY
Gini_index (D, a) = ), ——Gini(D")
= 1Dl @

Thus, we select the attribute which has the smallest Gini index as

the optimal partition attribute, i.e., a, =" Gini_index (D, a). The
relative importance of the features can then be reflected by the order
and frequency of the attribute being selected as the node (Gallego et al.,
2014). However, a decision tree always contains complex hierarchical
structures and numerous nodes. A detailed analysis of each branch node
of the decision tree will limit the results to a specific study area, which
is not conducive to understanding the discriminative information for
different crops. Therefore, the frequency of the occurrence for the nodes
is analyzed from both the spectral and temporal feature perspectives, in
order to reflect the discriminative information between the different
crops.

For SVM, the mathematical expression of the classification model is
gx)=<wxx>+b, wherew = Z:’;ly"ocixi is the weight vector, m is
the number of classes, x is the samples, a! corresponds to the
Lagrangian multiplier of the corresponding sample, and x! is the sup-
port vector, while o is not zero. In this way, we can obtain the weight
wj, j=1,2,..,n of each feature from the SVM classification model
where n is the number of features. We can take the weight as the im-
portance measure of the j-th feature of the sample. However, the tra-
ditional SVM can only solve binary classification tasks, whereas the
LIBSVM toolbox (Chang and Lin, 2011) we used uses a one-against-one
approach to solve the classification of multiple classes. Therefore,
LIBSVM carries out multiple binary classifications for a multi-class
problem. The classifier then generates multiple groups of w. We express
this as wk = [wlk, wzk, ...,w,’,‘], k=1,2,..,l(+ 1)/2, where | represents
the number of classes and n represents the number of features. The
number of one-to-one classifiers is then I(I + 1)/2. Finally, the weight w
of all the features can be expressed as the following formula, in which
w,j=1,2,.,nis the sum of absolute values of w}‘
k=1,2,..,l(l +1)/2, and the importance of the j-th feature is ¢; = wf,
which is used as the criterion of feature importance.

11+1)/2

w=[ Y wfl,
k=1

1(1+1)/2 1(1+1)/2

z Iwzkl, . Z Iw,’fl] = [wy, Wy, ...,w,]
k=1 k=1 3

Furthermore, in order to present the effectiveness of the different
temporal and spectral features more intuitively, an adding operation
was carried out on the importance of each feature. The importance of
each feature were added up according to their spectral and temporal
attributes, i.e. date or feature type, respectively. For example, the im-
portance of the twelve spectral bands and five index images for each
phase were added up as the importance of that image date. In the same
way, the importance of eight phases for each spectral band and index
were added up as a measure of importance of that feature type.

As for random forest, the change of prediction error, which is cal-
culated by the out-of-bag data, is taken as the measure of feature im-
portance. For a given data set D with m samples, we now resample it to
generate a new data set D’. In detail, we first randomly pick a sample
from D and copy it into D’. We then put it back into the initial data set
D, so that the sample can still be picked next time. After this process is
repeated m times, we obtain data set D' containing m samples. Clearly,
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some samples in D will be picked multiple times, while others will not
be picked. If the probability of a sample never being picked in m
sampling processes is (1 — i)m, then the percentage of the samples in
the initial data set D that do not appear in the sampled data set D’ is the
limitation of (1 — %)’", i.e., 36.8%. Thus, we can use m training samples
to train the model, and we still have about one-third of the total sam-
ples that are not in the training set to evaluate the model. This part of
the samples is called the out-of-bag data. In each decision tree of the
random forest, we can randomly disturb the value of the feature for
each sample in the out-of-bag data, and the change in the prediction
error caused by this change is taken as the measure of feature im-
portance. The overall mean of this metric for each tree is then calcu-
lated, which is then finally divided by the overall standard deviation to
obtain the coefficient of variation. This can be used to compare the
discreteness of groups with significantly different mean values, and can
eliminate the effect of different units and/or averages on the degree of
variability of two or more groups. Meanwhile, an adding operation was
again executed on the spectral bands by dates.

However, observations of each methodology may differ to some
extent, so in order to evaluate the correctness of the unanimous con-
clusions drawn by these three methodologies, all 2,766,108 labeled
pixels were also analyzed based on just their pixel values. Specifically,
the standard deviation of the average value of the eight land cover types
was taken to reflect the degree of differentiation. The larger the in-
dicator, the easier it is to distinguish between different types of crop-
land. Furthermore, the image dates reflected by the different features
can vary, making it impossible to select visually the best identification
date. Therefore, the normalization operation shown in formula (4) was
used to change the absolute value into a relative value. After normal-
izing the values of each feature, the values corresponding to each date
and each feature were also added up to present the effectiveness of the
different temporal and spectral features more intuitively.

’ Xi — Xmin

X/ =L fmin i-1,2,..,8
Xmax — Xmin (4)

3. Results
3.1. Comparison of the different classification methods

In order to verify the effectiveness of the different classification
methods, the same training samples and test samples were used to
implement the decision tree, SVM, and random forest classifiers. The
parameters of each method were set and the classification results of
each method are shown in Fig. 5.

It can be seen that random forest achieves the highest overall
classification accuracy of 97.85%. SVM ranks second, lower than
random forest by 0.63%. The least effective performer is the decision
tree classifier, with an overall classification accuracy of 95.92%, which
is lower than SVM by 1.3%. In terms of method efficiency, SVM takes

97.85

97.22

96.67
97 95.92

DT SVM RF

mOverall Accuracy  mKappa Coefficient

Fig. 5. Classification results of the different classification methods.
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the longest time as multiple grid search operations are needed to de-
termine the optimal combination of parameters. Random forest has the
second-highest efficiency, on the premise of setting 100 trees. The de-
cision tree classifier takes the shortest time as it only consists of one
tree. Some additional operations are also needed to evaluate the im-
portance of the features for random forest and SVM. However, once the
decision tree is completed, the importance of the features can be vi-
sualized. Therefore, if the classification mechanism is needed to be
understood thoroughly and the requirement for accuracy is not very
high, the decision tree classifier is a good choice (Penia-Barragan et al.,
2011). Otherwise, random forest is recommended for classification
under most cases (Teluguntla et al., 2018).

3.2. Classification results

The classification results presented in this section were obtained via
the random forest classifier, i.e., the most accurate classifier. Fig. 6
intuitively presents the spatial distribution patterns and proportions of
the cultivated areas of the different crops in the study area.

In detail, corn has the largest planting area in the study area, with a
uniform and continuous distribution and a relatively large plot area.
The planting area of rice ranks second, and its spatial distribution is
relatively concentrated, along both sides of the river and around the
water sources, reflecting the dependence of rice planting on water re-
sources. The crop with the third-largest planting area is soybean, whose
spatial distribution is discrete. Except for a few areas where the soy-
beans are planted in blocks, the other soybean plots all present a long
and narrow rectangular shape along the north-south direction, and
most are intercropped with corn. Beet and potato present a blocky
distribution, and the planting area of beet is concentrated in the middle
part of the area. The reason for this is that the soil in the middle part is
close to the river, so it has high fertility. A strong water and fertilizer
retention capacity and suitable irrigation conditions can result in beet
having a higher sugar content and yield. The distribution of potatoes is
concentrated in the middle of the northern part of the study area. In
addition to the above five crops, there are three reservoirs in the area
and a river running through the center from east to west, which to-
gether allow the irrigation of the crops. The distribution of the re-
sidential land presents a spot-like distribution, and most of the villages
extend in an east-west direction. Since the terrain in the study area is
flat and the soil is fertile, it is suitable for the cultivation of crops. As a
result, the proportion of forest is very small, and is almost invisible in
Fig. 6.

Furthermore, in order to show the intercropping phenomenon of
corn and soybeans more clearly, we have enlarged the upper part of
Fig. 6, indicated by the red rectangle, and the classification map is
shown in Fig. 7. We can see that the classification result can effectively
depict corn and soybean plots with only a few pixels’ width.

A quantitative evaluation was also carried out for the classification
results and the confusion matrix of the model on the test data is shown
in Table 4. The first column represents the classified categories, and the
first row represents the true attribution of the pixels. Thus, the diagonal
indicates the number of correct sample pixels while the others are
misclassified pixels. User accuracy and mapping accuracy are located in
the last column and last row. The overall accuracy appears in the lower
right corner.

This table shows that the classification accuracies for rice, water,
and buildings are all higher than 99%. This is due to the discriminant
properties of these three types, including the water information con-
tained in rice and water and because the reflectance properties of
buildings differing from that of vegetation. This allows them to be
clearly distinguished from the other types, A bit of confusion among the
four summer crops of corn, soybean, potato, and beet, since these four
crops are all dryland crops and their growth times are relatively close.
In detail, the confusion between corn and soybean is the most serious,
and can be attributed to two reasons. On the one hand, the
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Fig. 6. Classification results of the random forest classifier.

intercropping phenomenon between corn and soybean is so common in
our study area that they are nearly always confused. On the other hand,
the phenological calendars of corn and soybean are very similar, so that
their spectral characteristics during the growth period are also similar,
making it difficult to distinguish them. The classification accuracy for
potato and beet is about 5% lower than corn and soybean. When
combined with the field survey analysis, we know that these two crops
are minor crop types, compared to corn and soybean. Meanwhile, the

proportion of the samples in the process of sample labeling is also
consistent with the proportions of the crop field distribution, to some
extent, leading to fewer training samples for these two types than the
other major crops. A strategy of uniform sampling could solve this
problem. However, the classification accuracies for the minor crops are
higher than 90%, while the major crops have an even better classifi-
cation accuracy, which can meet the requirements of most mapping
tasks. Furthermore, the classification accuracy for forest is the worst, at
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Fig. 7. Comparison of an area of zoomed classification results. (a) Labeled references. (b) Classification result.

only about 85.94%. This can be attributed to the real distribution of the
land cover. The small coverage of forest in this large agricultural county
results in an uneven distribution of samples. However, the obvious
seasonal characteristics of forest can be used as a distinguishing feature.
As we mainly focused on distinguishing different types of crops in this
study, this was ignored. If necessary, the discrimination could be fur-
ther improved by adding an image from a non-crop growing season.
Furthermore, the mapping accuracy of these land covers in this study is
consistent with the user’s accuracy, so that the Kappa coefficient is as
high as 0.9667.

4. Analysis of feature importance

In this section, we present the different results obtained by the three
machine learning methods, with regard to the relative importance of all
136 features. Subsequently, we will answer our research questions
based on the analysis from the spectral and temporal feature perspec-
tives. Finally, the common conclusions drawn from the analysis are
verified based on statistical methodology.

4.1. Importance of all the features

On the premise of using the minimum Gini index as the optimal
partition attribute, the decision tree constructed in our study is shown
in Fig. 8. Each node is represented by a rectangular box in the figure,
where the upper row represents the image date while the lower row
represents the feature. Meanwhile, the decision rules are represented by

the connecting lines with corresponding values. Each category is re-
presented by an ellipse of different color, and the subscript number
indicates the number of subsets of that class. In addition, three border
types are used to represent the different types of features, according to
their different attributes.

It can be clearly seen that the SWIR features take up almost half of
the nodes, i.e. 16 of 38, which intuitively shows the importance of
SWIR. Furthermore, the topmost branch is mainly used to distinguish
water from forest, while the others are mainly used to distinguish the
different crop types. It can also be seen that the subscript numbers for
water, forest, building, and rice are all no greater than 3, while the
subscript numbers for corn, soybean, beet, and potato are much greater.
This hints that the distinction between the different crop types is more
complicated than that between crops and non-crops.

Fig. 9 presents the SVM-based feature importance result. The hor-
izontal and vertical axes represent the number of features and the im-
portance of that feature. Numbers 1 to 12 are the 12 spectral bands on
May 9th, and the number of the features is consistent with the order of
the bands that we described previously. Similarly, numbers 13 to 24, 25
to 36, 37 to 48, 49 to 60, 61 to 72, 73 to 84, and 85 to 96 correspond to
the 12 spectral bands on May 19th, June 23rd, July 13th, and July
23rd, September 1st, September 11th, and September 26th, respec-
tively. Numbers 97 to 104, 105 to 112, 113 to 120, 121 to 128, and 129
to 136 correspond to NDRI, NDSVI, NDTI, NDVI, and PMI for the eight
temporal phases.

Fig. 9 reveals that the use of the spectral indices obtains a sig-
nificantly better effect than the original spectral bands, especially for

Table 4
Confusion matrix for the classification result.
Rice Corn Water Soybean Potato Beet Forest Building UA/%
Rice 595,898 1908 0 1077 8 778 206 337 99.28
Corn 466 1,485,305 0 8555 90 2335 1452 95 99.13
Water 93 127 12,126 13 0 173 2 177 95.40
Soybean 220 16,119 34 343,759 256 2477 12 65 94.71
Potato 0 5206 0 3426 41,743 2511 0 5 78.92
Beet 239 4428 0 917 2906 98,377 1 258 91.83
Forest 58 1171 0 153 0 2 10,222 0 88.08
Building 45 399 49 361 2 115 0 116,585 99.17
MA/% 99.81 98.06 99.32 95.95 92.75 92.14 85.94 99.20 97.85
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Fig. 8. The decision tree in our study.

NDRI, NDSVI, and NDVI. In addition, features 37 to 72 (July 13th to
September 1st) exhibit more importance than those on the other dates.

While calculating the feature importance of random forest, the
calculation was repeated 10 times in order to avoid the randomness of

w.s,g.i

Legend
Type of Feature

|

Node instruction

Spectral Feature

| VIFeature
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Image Date

Feature

the result. Fig. 10 presents the average results. The number of the
feature has the same meaning as in SVM, the vertical axis represents the
percentage of the decrease in accuracy caused by changing that feature.

It can be seen that all the features have a positive effect on the
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Fig. 10. Feature importance of random forest.

classification accuracy. Features 49 to 60 (July 23rd) have the most
significant effect, while features 73 to 136 (spectral features) also have
an impact on the accuracy.

4.2. Importance of the temporal features

For the decision tree classifier, Fig. 11 presents the frequency of
occurrence of the nodes for the different image dates. The horizontal
axe represents the date of images, while the first two numbers represent
the month, and the last two numbers represent the day. The vertical
axis represents the frequency of occurrence of the nodes.

The image on July 23rd plays a leading role in crop differentiation.
This is mainly due to the stems and leaves of the different crops being

[ ]Frequency

]

T T
0623 0713

T T T T T T
0509 0519 0723 0901 0911 0926

Fig. 11. Frequency of occurrence in the nodes for the different image dates of
decision tree.

11

mature and at the peak stage of growth. Thus, the crops can be dis-
tinguished by the different characteristics of the plants. For example,
corn is in the jointing stage, and the stems and leaves of the plant are
well developed, and the plant height is much higher than that of the
other crops. Meanwhile soybean is in the stage of filling seed, and the
development of its stem and leaves is also completed, but the plant
height is much lower than that of corn. In addition, rice is at the booting
stage, beet is in the tuber growing period, and potato is at the end of
blooming. All the crops are in different growth stages.

The frequency of occurrence of images on May 9th was eight and for
September 11th it was four. On May 9th, corn, soybean, and potato are
in the sowing stage, while rice is at the emergence stage and beet is in
the transplanting stage, as shown in Fig. 2. On September 11th, corn,
rice, and soybean have matured into the senescence period, while beet
and potato are in the period of nutrient accumulation. Last but not
least, the images from May 19th, June 23rd, July 13th, and September
26th all contribute to the crop classification. However, the image from
September 1st has the worst effect on crop differentiation, compared to
the other image dates, so it is not selected as a node in the decision tree.

The added up temporal feature importance results for the different
image dates of SVM are shown in Fig. 12. The horizontal axis also re-
presents the date of images, while the vertical axis represents the square
of the weight vector.

Not surprisingly, the image from July 23rd plays a leading role in
the crop differentiation, the reason for which has been explained above.
However, the images from July 13th and September 1st present a more
important effect than the other image dates, which is quite different
from the result of the decision tree classifier. This difference may have
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Fig. 12. Cumulative importance of the different image dates in SVM.

been caused by their different mechanisms of model construction, since
the model of SVM is only construct by the support vectors, rather than
all the samples that were used in the decision tree classifier.
Furthermore, the images from May 9th, May 19th, June 23rd,
September 11th, and September 26th are also beneficial to the crop
type mapping, but are less important.

The added-up results of the temporal feature importance for the
different image dates in random forest are shown in Fig. 13. While the
horizontal and vertical axes represent the date of images and the
average change of prediction error, which is calculated by the out-of-
bag data.

Clearly, the image from July 23rd plays a leading role again, which
hints at the extraordinary importance of the image from July 23rd. In
addition, the images from May 9th, May 19th, September 11th, and
September 26th added a certain degree of accuracy, which is similar to
the result of the decision tree classifier but differs from that of SVM.
Moreover, the remaining images from June 23rd, July 13th, and
September 1st also contribute to the crop classification.

4.3. Importance of the spectral features

First of all, from the tree constructed in our study, as shown in
Fig. 8, we can see that band 11 on May 19th is effective for distin-
guishing between water bodies, forest, and other crops. The frequency
of the occurrence in the nodes was analyzed according to their spectral
and temporal attributes for the decision tree classifier. The results are
shown in Fig. 14.

It can be clearly seen that band 1 and NDRI are of great significance
for crop type mapping, with the frequency of occurrence being eight
and seven. Band 11, band 12, and NDTI also contribute a lot. In addi-
tion, band 5, band 6, and band 8A also contribute. However, for the
artificially constructed features of NDVI and NDSVI, the influence is not
so obvious in the construction of the decision tree. Furthermore, the
frequency of occurrence of NDTI, NDRI, band 11, and band 12 indicates
that the short-wave infrared bands are very important in fine crop
classification. In the same way, from the frequency of occurrence of
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Fig. 13. Cumulative importance of the different image dates in random forest.
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band 5, band 6, and band 7, we can see that the red edge bands play
more important roles in crop type mapping than the traditional red,
green, and blue bands.

Fig. 15 presents the added-up results for the importance of the
different spectral features in SVM. The horizontal axe represents dif-
ferent types of feature, while the vertical axis represents cumulative
results.

It can be seen that NDRI, NDSVI, and NDVI are more important than
the spectral bands, while NDTI and PMI perform well in the classifi-
cation. This hints that reasonable spectral indices, which are artificially
constructed based on expert knowledge, are beneficial to the differ-
entiation of crops. Furthermore, bands 6 to 9, band 11, and band 12 are
indispensable in our study, while band 1 to 5 contribute little. Overall,
the red edge, near-infrared, and short-wave infrared bands are ex-
tremely useful in fine crop classification. Among the different bands,
the short-wave infrared bands are the most important, followed by the
near-infrared bands. The red edge bands also present a better perfor-
mance than the traditional red, green, and blue bands in the cumulative
importance of the different spectral features of SVM.

Last but not least, the added-up results of the spectral feature im-
portance for random forest are shown in Fig. 16. While the horizontal
and vertical axes represent the type of features and the average change
of prediction error, which is calculated by the out-of-bag data.

As in the other results, NDRI, NDSVI, and NDTI are more important
than the original spectral bands, while NDVI and PMI also perform well
in the accurate discrimination of multiple crops. This illustrates that
artificially constructing a rational feature space is indeed beneficial to
the classification of crops. Moreover, band 5 is rather important for
crop differentiation, followed by band 11 and band 12, which further
proves that the short-wave infrared bands and the red edge bands are
more important than band 2, band 3, and band 4.

4.4. Summary

Although the conclusions with regard to the feature importance for
these three methodologies may differ, to some extent, some unanimous
conclusions can still be drawn. That is, all the analysis results show that
a rational feature space constructed by expert knowledge is important.
In detail: 1) July 23rd is the best identification date that can capture the
crucial phenological stages efficiently. This is mainly due to the stems
and leaves of the different crops being at the peak of growth at that
time, as shown in Fig. 2. 2) The short-wave infrared bands are ex-
tremely important in fine crop classification since these bands can
better characterize the water content and residue cover of the different
crop types. 3) The red edge bands of Sentinel-2 play an important role
in accurate crop identification, and are usually more important than the
traditional red, green, and blue bands. This is mainly due to the red
edge bands being better at capturing the biochemical information of
vegetation.

4.5. Verification using statistical methods

4.5.1. Verification of the temporal feature importance

The specific analysis results for the 12 spectral bands and the 5
spectral indices are shown in Fig S-1 and Fig S-2 of the supplementary
material and the added-up results are shown in Fig. 17.

At this point, it can be seen that the image from July 23rd does play
a key role in the classification. In addition, the images from July 13th
and September 1st are also extremely important. It can be concluded
that images of the vigorous crop growth period are conducive to fine
crop classification. Furthermore, it is worth noting that, at an early
stage of crop growth, i.e., around May 19th, the different crops can also
be differentiated, to some extent. The above analysis of the importance
of the image date on the classification result could be used to guide the
selection of the image date in classification, so that the distribution
patterns and cultivated area information of the different crop types
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Fig. 15. Cumulative importance of the different spectral features in SVM.

could be obtained at an early stage of crop harvesting, so that the yield
could be estimated. In other words, these results indicate that, for the
summer crops in our study area, the first estimate could be made at the
end of May. A second estimate could then be made at the end of July,
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which would be more accurate.

4.5.2. Verification of the spectral feature importance
The standard deviations corresponding to the different features of
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Fig. 16. Cumulative importance of the different spectral features in random forest.
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Fig. 17. Importance of the different image dates.

each date are shown in Fig S-3 of the supplementary materials.
Normalization and accumulation operations were again performed. The
spectral feature importance is shown in Fig. 18.

Clearly, the importance of the artificially constructed spectral in-
dices is significantly higher than that of the spectral bands, with the
NDRI, NDSVI, and NDVI indices being the most significant. For the
spectral bands, the near-infrared bands (band 8, band 8A, band 9) play
important roles in the classification, followed by the short-wave in-
frared bands (band 11, band 12). Since NDRI, NDSVI, and NDTI all use
the short-wave infrared bands, this indicates that the short-wave in-
frared bands are especially important for crop type mapping. Moreover,
the red edge bands (band 6, band 7) of the Sentinel-2 data also assist in
the fine classification of crops. This is a unique advantage of the
Sentinel-2 data, compared to MODIS and Landsat.

5. Conclusions

In this paper, we first compared the classification results of the three
mainstream machine learning classification methods, using a feature
space which contained eight temporal phases, with 12 spectral bands
and 5 spectral indices for each phase. The spectral indices were artifi-
cially constructed, combining the expert knowledge in crop type map-
ping. Furthermore, the relative importance of the features used in the
classification process was analyzed for each classification method, and
a statistical analysis was carried out. From the experimental results, we
draw the following conclusions, which provide guidance for the optimal
temporal window selection and spectral feature space construction for
the future crop type mapping application using multi-temporal
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Sentinel-2 images.

1) Random forest achieved the highest classification accuracy, while
SVM came second, and the decision tree algorithm had the poorest
classification accuracy. In the case of considering the efficiency of
the algorithm, we recommended that the random forest method is
used for classification.

2) Images from the vigorous growth period are conducive to the fine
classification of crops. A first early season estimate of crop area
information could be made at the end of May for summer crops. A
second estimate could be made at the end of July.

3) The experiments also showed that a rational feature space can sig-
nificantly improve the classification accuracy. Specifically, the
short-wave infrared bands are extremely important in the fine
classification of crops, followed by the near-infrared bands.

4) The unique red edge bands of Sentinel-2 can effectively assist in the
identification of different crop types, which is a unique advantage of
Sentinel-2 data over MODIS and Landsat.

5) The classification results obtained with the Sentinel-2 data of a 10-m
spatial resolution could reflect the phenomena of the fragile farm-
land in China, and could accurately reflect the spatial distribution
patterns of the different crops and their proportions. Compared to
MODIS and Landsat data with a coarser spatial resolution, Sentinel-
2 data is more suitable for the fine classification of crops when the
plots are fragmented.
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